Part 1 of the 2GB DDR Kit Roundup took a close look at 3 memories based on Infineon memory chips. Since that review in October, a number of 2GB DDR kits have appeared in the market with most based on Infineon C or B die memory chips. There are, however, a few brands that have taken a different approach to memory chips for 1GB DIMMs, and we have included those in this roundup, along with the latest Infineon-based memories.
1GB DDR DIMMs began appearing in the market over a year ago, but it wasn't until mid-2005 that 1GB DIMMs with reasonably fast timings became widely available. These faster 1GB DIMMs finally made the choice of 2GB memory kits to be a reasonable choice in a market that had been dominated by fast DDR 512MB DIMMs.
There are many reasons to choose a 2GB kit over a 1GB kit or 4 512MB DIMMs. Two 1GB DIMMs on the AMD Athlon 64 can still run at 1T Command rate, instead of the 2T required by the 4x512MB DIMMs needed for 2GB with 512MB DIMMs - a definite advantage for the 1GB DIMMs. On the other hand, until recently, the available 1GB DIMMs were generally much slower than the fast 2-2-2 DIMMs that were commonly available in 512MB DIMMs. We normally saw 3-3-3 or 3-4-4 or slower timings for 1GB DIMMs. These poorer timings for 1GB DIMMs took away most of the advantage for the 1GB 1T Command Rate.
There was an additional "gotcha" with the 1GB DIMMs that many enthusiasts quickly discovered. With a starting point of 3-3-3 or 3-4-4 at DDR400, the 1GB parts did not overclock nearly as far as the 512MB parts. For all of these reasons, we generally recommended that most users were better off with 512MB DIMMs - at least until memory timings improved on the 1GB DIMMs.
The time for faster 1GB DIMMs has finally come in the past 6 months, and they are now available from almost every memory manufacturer. In Part 1, we looked at three 2GB kits from Corsair, Gigaram, and OCZ. In this part 2, we put six additional fast 2GB kits through our test bench, with some interesting results. We also updated some parts of our memory test bench, which required retesting of the original three 2GB kits.
Our memory tests differentiate memory in two ways. First, AnandTech has always been an advocate of real world performance measurements, and we've shunned using just synthetic benchmarks in our testing of every type of component, including memory. This is not because synthetic benchmarks are not useful - they are often very revealing of component differences - but rather, it is because running just synthetic benchmarks can severely distort the picture of performance with real applications and real games. That is why we always use games and the pure number-crunching Super Pi in our memory tests. It is also the reason why we test using both Buffered (Standard) and Unbuffered synthetic benchmarks. We have found in much of our testing that the less commonly used Unbuffered benchmarks mirror more closely how games really respond to memory differences.
Second, we moved to testing different memory speeds at the same CPU clock speed in our Athlon 64 memory tests. The AMD CPU, with unlocked multipliers, allowed us to finally remove the CPU speed differences from our memory tests. This allows you to finally see the true impact of memory speed increases and memory timings on performance. As you have seen in past reviews, those performance differences are very real, although they are much smaller than what many memory manufacturers might want you to believe. On the other hand, faster memory speeds and faster memory timings do improve performance, no matter what some nay-sayers are determined to prove.
No comments:
Post a Comment