Click

Showing posts with label Intel. Show all posts
Showing posts with label Intel. Show all posts

Saturday, March 1, 2014

Intel SSD 730 (480GB) Review: Bringing Enterprise to the Consumers

The days of Intel being the dominant player in the client SSD business are long gone. A few years ago Intel shifted its focus from the client SSDs to the more profitable and hence alluring enterprise market. As a result of the move to SandForce silicon, Intel's client SSD lineup became more generic and lost the Intel vibe of the X-25M series. While Intel still did its own thorough validation to ensure the same quality as with its fully in-house designed drives, the second generation SandForce platform didn't allow much OEM customization, which is why the SSD 520 and other SandForce based Intel SSDs turned out to be very similar to the dozens of other SandForce driven SSDs in the market.
The SSD market has matured since the X-25M days and a part of the maturing process involves giving up profits. Back in 2007-2008 the SSD market (both client and enterprise) was a niche with low volume and high profits, so it made sense for Intel to invest in custom client-oriented silicon. There wasn't much competition and given Intel's resources and know-how, they were able to build a drive that was significantly better than the other offerings.
The high profits, however, attracted many other manufacturers as well and in the next few years Intel faced a situation it didn't like: profit margins were going down, yet bigger and bigger investments had to be made in order to stay competitive in the client market. OCZ in particular was heavily undercutting Intel's pricing and big companies with technological and scale advantage like Intel tend not to like the bargain game because at the end of the day it's not as profitable for them. The enterprise market is a bit different in this regard because price is not usually the commanding factor; instead the focus is on reliability, features and performance, which made it an easy choice for Intel to concentrate its resources on covering that market instead.
For the majority of consumers this change in focus was negligible since the likes of Micron and Samsung had started paying attention to the retail consumer SSD market and Intel was no longer the only good option available. However, enthusiasts were left yearning for an Intel SATA 6Gbps design as many had built brand loyalty for Intel with the X-25M. In late 2012 the wishes materialized but to their disappointment only in the form of an enterprise SSD: the DC S3700
Adopting the platform from the DC S3500/S3700, the SSD 730 is Intel's first fully in-house designed client drive since the SSD 320. The SSD 730 is not just a rebranded enterprise drive, though, as both the controller and NAND interface are running at higher frequencies for increased peak performance. While the branding suggests that this is an enterprise drive like the SSD 710, Intel is marketing the SSD 730 directly to consumers and the DC S3xxx along with the 900 series remain as Intel's enterprise lineups. And in a nod to enthusiasts, the SSD 730 adopts the Skulltrail logo to further emphasize that we are dealing with some serious hardware here.
Capacity240GB480GB
ControllerIntel 3rd Generation (SATA 6Gbps)
NANDIntel 20nm MLC
Sequential Read550MB/s550MB/s
Sequential Write270MB/s470MB/s
4K Random Read86K IOPS89K IOPS
4K Random Write56K IOPS74K IO
Power (idle/load)1.5W / 3.8W1.5W / 5.5W
Endurance50GB/day (91TB total)70GB/day (128TB total)
WarrantyFive years
AvailabilityPre-orders February 27th - Shipping March 18th
Intel is serious about the SSD 730 being an enterprise-class drive for the client market as even the NAND is pulled from the same batch as Intel's MLC-HET NAND used in the S3700 and the endurance rating is based on JEDEC's enterprise workload. JEDEC's SSD spec, however, requires that client SSDs must have a data retention time of one year minimum whereas enterprise drives must be rated at only three months, which gives the S3500/S3700 a higher endurance. MLC-HET also trades performance for endurance by using lower programming voltages, resulting in less stress on the silicon oxide.
 Intel SSD 730Intel SSD 530Intel SSD DC S3500Intel SSD DC S3700
Capacities (GB)240, 48080, 120, 180, 240, 360, 48080, 120, 160, 240, 300, 400, 480, 600, 800100, 200, 400, 800
NAND20nm MLC20nm MLC20nm MLC25nm MLC-HET
Max Sequential Performance (Reads/Writes)550 / 470 MBps540 / 490 MBps500 / 450 MBps500 / 460 MBps
Max Random Performance (Reads/Writes)89K / 75K IOPS48K / 80K IOPS75K / 11.5K IOPS76K / 36K IOPS
Endurance (TBW)91TB (240GB)
128TB (480GB)
36.5TB140TB (200GB)
275TB (480GB)
3.65PB (200GB)
7.3PB (400GB)
Encryption-AES-256AES-256AES-256
Power-loss ProtectionYesNoYesYes
Continuing with the enterprise features, there is full power-loss protection similar to what's in the S3500/S3700. I'm surprised that we've seen so few client SSDs with power-loss protection. Given the recent studies of power-loss bricking SSDs, power-loss protection should make a good feature at least in the high-end SSDs.
With an enterprise platform comes its pros and cons. As the platform was originally designed for 24/7 running, there isn't any form of low-power state support. Hence even idle power consumption is a tremendous 1.5W and under load the power consumption can increase to over 5W. In fact, the SSD 730 needs so much power that it draws current from the 12V rail, which is usually only used by 3.5" hard drives. While our tests don't include temperature testing, the chassis also gets very hot and uncomfortable to touch under load. It's clear that the SSD 730 is not suited for mobile use and Intel is well aware of that. The target markets for the SSD 730 are enthusiasts and professionals who truly need the best-in-the-class IO performance.
 
Interestingly, the SSD 730 is available for pre-order from selected retailers today, which is something Intel has not done in ages. Shipments are scheduled to start on March 18th.
The controller is the same 8-channel design as in the S3500/S3700 but runs at 600MHz instead of the 400MHz of the S3500/S3700. It's coupled with sixteen 32GB (2x16GB) NAND packages with one of the dies designated for redundancy that protects against block and die level failures (similar to SandForce's RAISE and Micron's RAIN). This is still 64Gbit per die ONFI 2.1 NAND but compared to Intel's previous NAND, the NAND interface runs at 100MHz instead of 83MHz. As a result the bandwidth in each channel increases from 166MB/s to a maximum of 200MB/s (ONFI 2.x is a synchronous double-data-rate design), which may help in some corner cases. With an 8-channel controller the NAND interface doesn't usually play a major role because the SATA interface acts as a bottleneck and in the end we are still limited by the actual NAND performance.
 
Update: The SSD 730 actually uses 128Gbit NAND, which also expains the slow-ish write performance of the 240GB model.
 
As Intel switched to a flat indirection table design in the S3700, the SSD 730 needs way more cache than the old X-25Ms did and there are two 512MB DDR3-1600 packages to do the job. Furthermore, power-loss protection is provided by two 47 microfarad 3.5V capacitors.
 

Test System

CPUIntel Core i5-2500K running at 3.3GHz
(Turbo and EIST enabled)
MotherboardAsRock Z68 Pro3
ChipsetIntel Z68
Chipset DriversIntel 9.1.1.1015 + Intel RST 10.2
MemoryG.Skill RipjawsX DDR3-1600 4 x 8GB (9-9-9-24)
Video CardPalit GeForce GTX 770 JetStream 2GB GDDR5
(1150MHz core clock; 3505MHz GDDR5 effective)
Video DriversNVIDIA GeForce 332.21 WHQL
Desktop Resolution1920 x 1080
OSWindows 7 x64

Tuesday, April 30, 2013

ASUS Zenbook UX51VZ: Great Laptop, High Price


Meet the ASUS Zenbook UX51VZ
I have quite a few laptops that have been languishing in a non-fully-reviewed state for a while. The New Year has been a bit crazy, and in the midst of trying to update the benchmark suite and some other items, the time for a full review is long since passed. We’re finally done with our 2013 Mobile Benchmark Suite, and as we’ll have a variety of laptops to review in the coming weeks, I thought the UX51VZ was a good start for our new test suite. I won’t include every chart in this short review, but here’s the quick summary.
The ASUS Zenbook UX51VZ is a nice looking laptop that takes the core of the thicker N56V type chassis and thins it out, at the same time going for an aluminum chassis. At the same time, ASUS has upgraded the LCD to a nice quality IPS 1080p panel (anti-glare no less!), which is about as good as you’re going to find in Windows laptops right now—though I suspect laptops like the soon-to-launch Toshiba KIRAbook may have something to say about that shortly.
As you might guess from the “[xxx]book” names, these laptops are gunning for Apple’s MacBook Pro (Retina) in terms of overall experience. While I personally feel they fall short in some areas (the Retina still has a better LCD that’s factory calibrated to deliver good color accuracy), they’re also less expensive and they’re designed from the ground up to run Windows. That won’t be sufficient to win back users who have switched to Apple, but it might be enough to entice those contemplating the change to stick with Windows a while longer.

Friday, April 26, 2013

Intel's Return to DRAM: Haswell GT3e to Integrate 128MB eDRAM?

 We've known for a while now that Intel will integrate some form of DRAM on-package for the absolute highest end GPU configurations of its upcoming Haswell SoC. Memory bandwidth is a very important enabler of GPU (and multi-core CPU) performance, but delivering enough of it typically required very high speed interfaces (read: high power) and/or very wide interfaces (read: large die areas). Neither of the traditional approaches to scaling memory bandwidth are low power or cost effective, which have kept them out of ultra mobile and integrated processor graphics. 
The days of simple performance scaling by throwing more transistors at a design are quickly coming to an end. Moore's Law will continue but much like the reality check building low power silicon gave us a while ago, building high performance silicon will need some out of the box thinking going forward.
Dating back to Ivy Bridge (3rd gen Core/2012), Intel had plans to integrate some amount of DRAM onto the package in order to drive the performance of its processor graphics. Embedding DRAM onto the package adds cost and heat, and allegedly Paul Otellini wasn't willing to greenlight the production of a part that only Apple would use so it was canned. With Haswell, DRAM is back on the menu and this time it's actually going to come out. We've referred to the Haswell part with embedded DRAM as Haswell GT3e. The GT3 refers to the GPU configuration (40 EUs), while the lowercase e denotes embedded DRAM. Haswell GT3e will only be available in a BGA package (soldered-on, not socketed), and is only expected to appear alongside higher TDP (read: not Ultrabook) parts. The embedded DRAM will increase the thermal load of the SoC, although it shouldn't be as painful as including a discrete GPU + high speed DRAM. Intel's performance target for Haswell GT3e is NVIDIA's GeForce GT 650M. 
What we don't know about GT3e is the type, size and speed of memory that Intel will integrate. Our old friend David Kanter at RealWorldTech presented a good thesis on the answers to those questions. Based on some sound logic and digging through the list of papers to be presented at the 2013 VLSI Technology Symposium in Kyoto, Kanter believes that the title of this soon to be presented Intel paper tells us everything we need to know:
"A 22nm High Performance Embedded DRAM SoC Technology Featuring Tri-Gate Transistors and MIMCAP COB"
According to Kanter's deductions (and somewhat validated by our own sources), Haswell GT3e should come equipped with 128MB of eDRAM connected to the main SoC via a 512-bit bus. Using eDRAM vs. commodity DDR3 makes sense as the former is easier to integrate into Intel's current fabs. There are also power, manufacturability and cost concerns as well that resulted in the creation of Intel's own DRAM design. The interface width is a bit suspect as that would require a fair amount of area at the edges of the Haswell die, but the main takeaway is that we're dealing with a parallel interface. Kanter estimates the bandwidth at roughly 64GB/s, not anywhere near high-end dGPU class but in the realm of what you can expect from a performance mainstream mobile GPU. At 22nm, Intel's eDRAM achieves a density of around 17.5Mbit/mm^2, which works out to be ~60mm^2 for the eDRAM itself. Add in any additional interface logic and Kanter estimates the total die area for the eDRAM component to be around 70 - 80mm^2. Intel is rumored to be charging $50 for the eDRAM adder on top of GT3, which would deliver very good margins for Intel. It's a sneaky play that allows Intel to capture more of the total system BoM (Bill of Materials) that would normally go to a discrete GPU company like NVIDIA, all while increasing utilization of their fabs. NVIDIA will still likely offer better perfoming solutions, not to mention the benefits of much stronger developer relations and a longer history of driver optimization. This is just the beginning however.
Based on leaked documents, the embedded DRAM will act as a 4th level cache and should work to improve both CPU and GPU performance. In server environments, I can see embedded DRAM acting as a real boon to multi-core performance. The obvious fit in the client space is to improve GPU performance in games. At only 128MB I wouldn't expect high-end dGPU levels of performance, but we should see a substantial improvement compared to traditional processor graphics. Long term you can expect Intel to bring eDRAM into other designs. There's an obvious fit with its mobile SoCs, although there we're likely talking about something another 12 - 24 months out.
AMD is expected to integrate a GDDR5 memory controller in its future APUs, similar to what it has done with the PlayStation 4 SoC, as its attempt to solve the memory bandwidth problem for processor based graphics.